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Abstract.

In this paper, the Mirnov oscillations observed in the ASDEX tokamak are analyzed
with regard to the generally accepted interpretation scheme according to which
(1) Mirnov oscillations are caused by currents flowing parallel to B on rational
magnetic surfaces and (2) the field perturbation is frozen within the plasma. If the
second statement holds, the frequency is obtained from the profiles of the electron
density, the ion temperature and an eventual toroidal or poloidal rotation velocity. It is
shown that there are modes which follow this prediction. On the other hand, mode
coupling is observed. Mode coupling is also invoked to reconcile the experimental
findings with the predictions of a theory based on statement (1) according to which
there is a poloidal variation of both the phase velocity and the amplitude of the Mirnov
oscillations. While the observed phase velocity fits well into this picture, the poloidal
variation of the amplitude cannot be ascribed to only one mode in the majority of

cases. In addition, the possibility of coherent MHD activity due to currents in the

. scrape-off layer is discussed.




1.) Introduction

It is widely accepted that Mirnov oscillations with the poloidal and toroidal mode
numbers m and n, respectively, are created by perturbating currents flowing parallel to
the field lines on rational magnetic surfaces the q value of them being m/n.
Furthermore, the field perturbation B is expected to be frozen within the plasma, i.e. to
move with a velocity which is simply the macroscopic velocity of the plasma as far as
the single-fluid approximation is considered. In the two-fluid approximation the Hall
term has to be taken into account, too, which introduces the electron drift velocity [1].
There is much qualitative but little quantitative experimental evidence which supports
this interpretation scheme. It is the main aim of this paper to check the validity of these

two fundamental statements, in particular the consequences arising from the toroidal

geometry.

In a cylindrical plasma, the field perturbation would be of the type
E,s:éf;” cos (MY + ng - wt). (1)

The toroidal curvature, however, leads to two substantial modifications: The slope of
the magnetic field lines varies poloidally which results in a poloidal variation of the
wavelength: it is larger at the outer (low field) side of the torus. This effect can be

described in first order of the inverse aspect ratio by a transformation from ¢ to 1‘}.,

namely
® =9-Asind (2)

where © = 0 is in the midplane at the low field side. This transformation was first
derived by Merezhkin [2] on the plausible assumption that the phase of the mode
varies poloidally like the slope of the magnetic field lines of the resonant surface from

which it originates. Shafranov’s approximation leads to

l:(Bp+|2—i+‘i)e (3)
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where the values of Bp. the internal inductance |; and the inverse aspect ratio e = r/R

are those of the rational surfaces under consideration.

In the next section it will be shown that eq. (2) provides a sufficient description of the
experimental findings. This is of particular technical importance for the MHD mode
analysis in ASDEX since, due to the double-null divertor geometry, only half of the
minor circumference could be equipped with Mirnov probes. Hence, even the
determination of the poloidal mode number m is not obvious. In Section 2, after a brief

description of the experimental setup, it is shown how this problem is solved.

The second toroidal effect is the poloidal variation of the perturbation amplitude 55;)) .
Due to a quantitative treatment performed by one of the authors [3], this amplitude is
expected to be larger at the torus outside. The underlying model - which obviously
describes the phase variation, too - will be compared with experimental results in
Section 4. Prior to performing this comparison, the propagation of the modes is
discussed in Section 3. In the ASDEX device, beam-heated plasmas, in particular
those with H-type confinement behaviour, were the favoured subject of MHD
investigations [4 - 10]. Modes arising from major resonant magnetic surfaces (in the
majority of cases differing in m by 1 while n = 1 for both of them) may propagate at
different angular velocities and even in different directions. Such modes will be called
"independent modes". On the other hand, n = 1 modes were observed with m = 1 and,
e.g., m = 5, respectively, but exhibiting the same frequency. This phenomenon has
been dubbed "mode coupling" and is ascribed to the mutual interaction of (at least)
two perturbation currents flowing on rational surfaces differing in @ = m/n, where one of
them imposes its frequency onto the other one. On the basis of these experimental

findings, in Section 4 the observed variety of poloidal asymmetries will be attributed to

mode coupling.

Section 5 is dedicated to the investigation of two particular modes being characteristic
for beam-heated ASDEX plasmas. In this connection, the possibility of perturbation

currents flowing in the scrape-off layer will be discussed.
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2.) Experimental Setup, Data Acquisition and Determination of the Poloidal Mode
Number m.

In the original version, ASDEX was equipped with three poloidal sets of Mirnov probes
located on circles at different toroidal positions. These sets are shown in Fig. 1 which
demonstrates the essential handicap of mode analysis in a divertor tokamak: Only
1020 at the low field side and 440 at the high field side are covered with Mirnov
probes. (Here and in what follows, the angular distances are those between the
centres of the probes.) In cylindrical geometry, i.e. at constant poloidal wavelength,
these gaps would not matter at all; the angular distance of 7.3° between adjacent
probes would allow for detecting poloidal mode numbers as large as 25. In a torus,
however, the poloidal wavelength varies appreciably with 9; it is the smallest at the
high field side of the torus where only 440 are accessible to observation.
In 1986, the ASDEX divertor was reconstructed in order to stand more heat load due
to the increased duration of the heating pulses. At this occasion, one of the three
Mirnov probe sets had to be removed while another one was replaced by a set of
newly designed probes which again cover 102° at the outer but now 61° at the inner

side as shown in Fig. 2. For this set, the poloidal distance of the probes is 10.29.

The data acquisition is done via CAMAC modules to a PDP 11-34 computer at a
maximum sample rate of 250 kHz, which is 10 times the maximum observed signal
frequency. 15 channels can be recorded with 24576 data points each, the time
window available therefore being 100 ms. In case of low frequency phenomena, a

sample rate of 50 kHz is sufficient, leading to a time window of about 500 ms.

The main topic of this paper is the analysis of Mirnov probe signals. It will be shown,
however, that a comparison with the data obtained from the soft X-ray diodes is crucial
for the interpretation in many cases. ASDEX is equipped with two SX cameras; one of
them containing 33 diodes is viewing side-on, the other one with 25 diodes from
- above as indicated in Fig. 2. The data acquisition system is identical with that of the
Mirnov probes; in parallel, the whole shot can be recorded at reduced data rate. Due

to the presence of only two cameras, poloidal mode numbers m > 2 cannot be
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determined by the system. In principle, m > 2 modes recorded by Mirnov probes may
show up with the same frequency in the diode signals; usually however, the intensity

arising from the near-boundary regions is too small. Hence, in most cases only m =1

and m = 2 are detectable by the SX diodes.

As already mentioned in the introduction,-the poloidal variation of the wavelength can

be described in first order of the inverse aspect ratio by the Merezhkin trans-

formation
® =9 -Asino. 2)

In ASDEX, it was found that eq. (2) describes well the observed variation of the
poloidal wavelength in the sections where probes are located. In the following it is
shown how eq. (2) can be used in order to determine the poloidal mode number m. In
a limiter tokamak, the minor circumference is usually covered by equally spaced
Mirnov probes. The poloidal mode number is then determined by plotting the B
traces, taking a time slice and counting, e.g. the zeros as is demonstrated in Fig. 3 in
which calculated signals are plotted for m = 3 and A = 0.4 being typical for beam-
heated plasmas. It is seen from this figure, that, due to the toroidal effect, there are
phase shifts in the signals of the upper and lower probes. Hence, it is preferable to
determine m by following e.g. a zero on its way around the minor circumference.

According to eq. (2), this trace is not a line but an S-like contour.

Suppose now, that a fraction of the minor circumference is not equipped with Mirnov
probes; this situation is indicated in Fig. 3 by the hatched sections. Apparently, the
knowledge of the & dependence of the wavelength (or phase velocity) according to
eq. (2) helps to "jump across the gaps" in the appropriate way. If, according to the raw
data, there is just one frequency, this procedure can be performed in a simple plot
program; an example is shown in Fig. 4. A more sophisticated version is the fit of the

data on the basis of eq. (2) resulting in the determination of m and A with error bars.
| [11, 12, ]. In order to perform that data analysis, points of equal phase (e.g. zeros) are
determined and a least square fit to ¢j = m (9 - A - sindj) + & is done, where ¢; denotes

the phase position of the ith coil located at 9;. A, 8 and m are free fit parameters, &
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accounts for the relative phase position. The optimal set of parameters A, § and m is

found by minimizing
N
2 ) S 4
X =g i; (01 - 030 (4)

where ¢io and ¢if denote the measured resp. the fitted phase position. Usually m turns
out to be close to an integer; for the fit it is allowed to be a REAL variable. This method
can be applied to raw data or Fourier components; the latter is illustrated by Fig. 5 for
an m = 6 mode. The fit delivers m = 5.96 and 2 = 0.04. For the sake of comparison,
another fit is shown, too, with the parameters m = 3.7 and x2 = 0.6. Two time slices of
this figure are shown in Fig. 6 in the form of polar diagramms which clearly

demonstrate the degree of accuracy being available. For these plots, the amplitudes

were fitted by a function of the type a+ b cos # + ¢ sin ¥.

Additional evidence is provided by following a field line or, to be more precise, a
location of equal phase on its way around the major and the minor circumference. In
the following, only the case n = 1 is considered. It is obvious, then, that for modes with
even poloidal mode numbers (briefly called even modes) the probes located in the
midplane at the outer and the inner side, respectively, are connected by a field line
and are expected, therefore, to exhibit equal phases. Moreover, the outer and the
inner part of a Mirnov probe set are partly connected to each other where the region of

"overlap" is given by A. For A = 0.4, e.g., the 9" interval of the outer probes is + 339,
while that of the inner ones is + 319 for the original version and * 42° for the newly

designed set. Thus, it is frequently possible to find pairs of outer and inner probes

which are located at practically the same field line.

In the case of an odd mode number m, things become more complicated. We then
take benefit, however, from the existence of more than one set of probes. This is
demonstrated by Fig. 7, which is a map of the probe locations in the §* - ¢ plane for
~ the present layout after modification. It is seen from this figure, that also for odd modes
pairs or groups of probes can be found which are connected by a field line. The phase

relations for the case depicted in Fig. 7 are shown in Fig. 8. Obviously, this procedure

g
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can also be applied to even modes. It is always found that Mirnov probes located at
the same field line exhibit the same phase. Hence, we arrive at the conclusion that eq.

(2) provides a good description of the toroidal effect as far as the phase is concerned.

Finally, we have to say a few words on the toroidal mode number n. It is determined
from those probes of the sets which are located in the midplane and several additional
probes located in the midplane, too. This equipment is redundant by far since, apart

from the occurrence of an m=3 / n=2 mode in the H regime, [8] no n>1 mode was ever

observed.

3) Mode Propagation and Mode Coupling,

In this section, the motions of the mode structure and the signal frequencies arising
from them are discussed. It is well known from elementary MHD theory, that a
magnetic field created by currents flowing in a plasma tends to be frozen within it, i.e. it
takes part in the motion of the plasma if the resistivity is sufficiently small. This is
usually obtained from Maxwell’s equation V x E = - 0B/t and generalized Ohm’s law
in the single-fluid model N j=E+yxB where n and v are the resistivity and the
velocity of the plasma, respectively. In the limit 1 — O, the combination of both
equations leads to complete "freezing” of B. In the two-fluid approximation, we obtain
the mass velocity v and the current density j from the ion and electron velocities v;

and ve by v = vi + meve / mj and _j/ (eng) = vj - ve. Generalized Ohm’s law reads then

53e 1 . 1
nl—E‘*'!X_B_“eTeIxE+EVPe (5)

where the last two terms are the Hall term and the electron pressure term. Applying the

same procedure we find that the velocity at which the "frozen" field moves is a different

one, namely

v=y-Lj-—1 - Vpe xB. (6)

Note that the sum of the first two terms is just the electron velocity ye. We discuss now

the contributions of the terms at the right-hand side of eq. (6) to v" and start with the
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electron drift velocity - j/ (eng). This velocity is essentially a toroidal one as can be

seen from the equilibrium condition

Vp=V(pe+pi)=ixB (7)

or, in cylindrical approximation

ap . .
P = joBy-igBs - (8)
or

In an ohmically heated ASDEX plasma the poloidal beta is of the order 0.3 which

means that the contributions of j3 and jo tend to cancel each other. This leads to the

estimate
o _By ©)
jo Bo
or, using
By Be
=-=—=F — 1 0
A RB, By (19)
to
jﬁ = “&'lq) . (1 1)

If signs are disregarded, eq. (11) holds also for the case of significant additional

heating. In the case B = 2, e.g., the contributions of jgand jo to the pressure are again
of the same order but now supporting each other (reversal of the sign of j3). Obviously,
the term due to the electron pressure gradient does not alter the estimate given above
since pe < p. Thus we find that in the case v = 0 the modes propagate with a velocity
close to the electron drift velocity which is nearly toroidal. As far as the signal

frequencies are concerned, however, even small poloidal velocities cannot be
neglected: A pure toroidal drift velocity - jp/(ene) = R leads to the angular frequency

wg = Ny of the Mirnov probe signal. The same frequency can be produced by a pure
poloidal drift velocity - j3 /(eng) = wyr if og = Mwy. From there we get

jo _Tws _rn _g

jp Rw, Rm @




which coincides with eq. (11).

Substantial toroidal motion of the plasma is caused by the unidirectional tangential
neutral injection. At a power level of 1 MW, the toroidal rotation velocity on axis is
about 107cm s-1 which corresponds to an angular frequency of 2xr x 10 kHz. The
rotation velocity is more or less proportional to the heating power; the maximum
values of the latter are 3.5 MW for H and 4 MW for D’ injection. The toroidal rotation
velocity is measured via Doppler shift by charge exchange recombination
spectroscopy [13], Typical velocity profiles are parabolic or broader. Attempts were
made to detect an eventual poloidal rotation of the plasma as it was observed in the
near-boundary region of DIl - D [14]. Work is still in progress; so far, it can only be

stated that a poloidal rotation velocity, if any, is below 106 cm s-1.

In the ASDEX device, the plasma rotates in positive @ -direction, i.e. counter-clockwise
if seen from above. Accordingly, in the case of counter-injection, both v and -j/(en,) are
in the same direction. This situation is illustrated in Fig. 9a where, as an example, the
q = 3 surface is cut open and laid flat. In contrast, for co-injection, both motions oppose

each other as shown in Fig 9b. Hence, it then depends on details what the resulting

direction of y* is.

Things become less complicated, if we regard a propagating MHD mode as a
travelling wave. Accordingly its k vector is normal to the lines of equal phase which are
the magnetic field lines of the rational surface from which the mode originates.
Obviously, a motion parallel to B is irrelevant in the frame of this model. Hence, the
vectors y and | of eq. (8) can be reduced to their components normal to B namely the

normal velocity ¥1 and the diamagnetic electron drift velocity

S N | i
ene 148 cneBz -B—X(JX—B)

This leads to

wlgreads o nl
Vi=¥i-en L . B2vpex§

€

or, taking into account eq. (9), to
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. _ 1 .
XL—XL+C%B2VP1XE- (12)

According to this equation, the mode propagates with the sum of the normal
macroscopic velocity and the reduced (Vp; in lieu of Vp) diamagnetic drift velocity.
Both constituents are predominantly poloidal motions. Nevertheless, egs. (6) and (12)
are equivalent as far as the frequencies of the modes are concerned. Hence, we are

free to establish a combination of them which is best suited for comparison with

experimental data. We select

yvi=v+ 1B2VpiXE- » (13)
€Ne

This equation can be directly derived from eq. (5) by substituting eq. (7). It allows for
the determination of the mode frequency if the profiles of the electron density, the ion
temperature and the toroidal rotation velocity are known. In order to give an estimate,
what eq. (13) means for the signal frequency, we assume parabolic profiles for the ion
temperature and the electron density. Then the absolute value of the second term
becomes 2rkT;(0) / eaB which means that the angular frequency of the motion is
constant. kT;(0) is the ion temperature on axis. For k T;(0) = 1 keV and B = 2T
we obtain 2.5 - 105 cm s' at r = a and a signal frequency of
m x 1.0 kHz. This has to be compared with the signal frequency created by the toroidal
motion given above. Hence, near the boundary, where the toroidal rotation velocity is

small, the contribution of the diamagnetic drift becomes competitive, in particular

because of the weighting factor m/n.

An example is shown in Fig. 10. fe is the frequency due to the toroidal rotation of an L-
type discharge obtained by co-injection. Hence, the frequency of the m =1 /n =1
mode is expected to be fy - f4, where fq is the frequency due to the reduced
diamagnetic drift which is derived from the measured profiles of electron density and
ion temperature. The location of the q = 1 surface is obtained from SX measurements;
~ that of the m = 2 surface was estimated on the assumption that the total current flows

within the q = 2 surface. This assumption overestimates to some extent the true radius
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of the q = 2 surface. It is seen from Fig. 10 that fy - 2fq < 0 which means that the m = 2

mode propagates in opposite direction, which agrees with the observation.

Fig. 10 presents an example for the simultaneous occurrence of two independent
modes, i.e. modes propagating according to the local velocities. On the other hand, in
many tokamaks mode coupling was observed, i.e. the simultaneous occurrence of two
(or more) modes with different m/n ratio i.e. arising from different rational surfaces, but
with same frequency [12, 15, 16, 17]. Obviously, the frequency can be ascribed to the
local values of only one of the two (or more) rational surfaces. Therefore, we have to

distinguish between driving and driven modes.

A very impressive example for mode coupling is presented in Figs. 11, 12 and 13.
Fig. 11 depicts the temporal evolution of an H-type shot approaching the Troyon beta

limit on a 150 ms time scale. Plotted are the poloided beta, the Hy/Dg, emission from

the upper divertor chamber indicating the occurrence of ELMs and the By traces from
the Mirnov probes located at & =0 and § = =&, respectively. It is clearly seen thatatt ~
1.29 s an ELM occurs the amplitude of which (according to the Hy/Dg, signal) exceeds
appreciably those of the preceding and the successing ones. This particular ELM
apparently triggers a different behaviour of MHD activity as far as B, is concerned: it
leads to the occurrence of a continuous mode. Fig. 12 is an expansion of Fig. 11 in a
time window of 1.5 ms. In addition a signal of an SX diode viewing side-on near the
midplane is plotted (cf. Fig. 2). According to Fig. 12, the sequence of events is as
follows: Starting att = 1.292 s, a low amplitude oscillation with a frequency of 28 kHz is
seen in both the SX and Mirnov probe traces. Adding signals from other diodes and
coils, we find m = 1/n = 1 for SX and m = 5/n = 1 for the Mirnov probes. Both modes
propagate according to the toroidal velocity. At t = 1.2925 s, the amplitudes of the two
signals rise up to 1.2926 s where, according to the H,/D spike, a giant ELM occurs.
(This is an example of fishbone-like MHD activity [4]. From Fig. 11, it might be inferred
~ that such events are precursors to ELMs. In ref. [4], however, it was pointed out, that
many ELMs are not preceded by "fishbones") Immediately after that event, a mode

develops which still propagates in the direction given by the toroidal rotation but at
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appreciably reduced frequency, namely 8.5 kHz. From the Mirnov probe signals we
obtain m = 2, n = 1. Furthermore, the previous oscillation has survived but with
reduced amplitude. Again 5 ms later, the m = 2 mode imposes its frequency onto the

SX signals which is shown in Fig. 13. The SX camera still shows an m = 1/n = 1

behaviour.

At the time when this discharge was performed, profiles of the toroidal rotation velocity
were not yet taken; information from a region the major radius of which is roughly 195
cm, i.e. about 30 cm away from- the magnetic axis was available. In this shot, the
toroidal velocity v; was 2.6 - 107 cm s-1 corresponding to f = 21 kHz.This is by a factor
of 1.3 smaller than the frequency of the m=1 / n=1 mode which is located at a minor
radius of ~13 cm. In this shot co-injection was applied, too, which means that the
diamagnetic drift reduces the resulting frequency. Thus, for the fishbone-like event, the
m=1/ n=1 mode is clearly the "master” i.e. driving the m=5 / n=1 oscillation. It was
reported in previous papers [4, 8, 10] that in beam-heated ASDEX plasmas the m =
1/n = 1 mode may occur as precursor to sawtooth relaxations, as a quasi-stationary
oscillation or as a fishbone-like event. Regardless on the waveform, there is always an
n = 1 satellite with a rather large m number which means that the perturbation current
is flowing near the separatrix. Most remarkably, mode coupling extends across the
total plasma cross section in such cases. Similar observations were made at ISX-B
[15] and TFTR[16]. For the latter device, MHD code simulations result in a cluster of
coupled modes. In low g cases (corresponding to the common ASDEX operation
regime), the m spectrum exhibits a pronounced maximum at m = 1, a minimum at m ~
3 and then a continuous rise toward the boundary [16]. In ASDEX, such satellites exist
also at combined neutral beam and ion cyclotron heating; they are not observed,
however, if only ICRH is applied. Thus, the toroidal rotation caused by neutral injection

appears to be a prerequisite for this type of mode coupling.

-On the other hand, the observed frequency of the m=2 / n=1 mode which develops
after the giant ELM is easily explained by the local rotation velocity at the q=2 surface

diminished by the double frequency due to the drift term. Hence, we conclude that
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after the occurrence of the ELM, the m=2 / n=1 oscillation imposes its frequency onto
the m=1/ n=1 mode. This conclusion is supported by a more quantitative discussion
as is shown by the frequency profiles of Fig. 14. In this figure, the profile fp of the
toroidal rotation frequency is assumed to be half-circular, which corresponds to
measured H-mode velocity profiles obtained in a later phase of ASDEX operation. The
central value is chosen such that the measured velocity at r=30 cm is matched. The
frequency fq corresponding to the reduced diamagnetic drift velocity is obtained from
profiles of the electron density ng and the ion temperature T;. A code simulation using
the measured profiles delivers r=13 cm for this and r=33 cm for the q=2 surface. It is

seen from Fig. 14 that the above assumption for fp is able to explain the experimental
findings.

In the discharges shown in Figs. 10 and 14, the temperatures of electrons and ions are
nearly equal. This means that the implementation of the complete (Vp in lieu of Vpj)
diamagnetic drift velocity would impair the good agreement between the measured
frequencies and those obtained from the profiles. Due to lack of information, we have
neglected an eventual poloidal rotation of the plasma. At a minor radius of 32 cm, a
velocity of 0.5 - 106 cm s-1 would contribute by 5 kHz to the signal frequency of the m =
2 mode and hence impair the agreement, too. We conclude, therefore, that in this
region, i.e. at 3/4 of the minor radius, the poloidal rotation velocity, if any, is of the order
105 cm s-1 or smaller. Furthermore it is seen that the frequency of the m=1 mode can
easily be compared with the experimental data while in the case of the m=2 mode it is
much more sensitive to the accuracy of the profile determination. This holds the more
for modes with m>3 which are located near the separatrix, i.e. in a region for which
reliable values of Vp; and v, cannot be obtained. For this reason, we are not able to
provide quantitative evidence for the frequencies of m>3 modes propagating in the
direction of the diamagnetic electron drift [7]. It is very plausible, however, that the

diamagnetic drift dominates the motion of the modes the more, the larger the poloidal

mode number m is.
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In the case of Figs. 12, 13 and 14, the direction in which the modes propagate is
governed by the toroidal rotation which explains the occurrence of just one frequency:
n=1 for all modes involved. Assuming a poloidal motion of two coupled modes, we
would expect two frequencies according to the different poloidal mode numbers. This,
however, was never observed in ASDEX nor - to the best kowledge of the authors - in
other tokamaks while mode coupling, in particular between m=1 and m=2, is a quite
usual phenomenon. As an example, such coupling occurs in some lower hybrid
scenarios where the direction of propagation corresponds to the diamagnetic electron
drift. Also in those cases, the frequency is the same for m=1 (SX) and m=2 (Mirnov
probes). We conclude from this observation that the true motion of the mode structure
is that given by eq. (6) which predicts an essentially toroidal velocity. Similar results
were already obtained from Pulsator [17] . In Ohmic discharges it was observed that
prior to disruptions the m=2 mode imposes its frequency onto the m=1 mode which

was ascribed to a toroidal rotation of the mode structure.

The common feature of the examples discussed above is the coupling between the
m=1/ n=1 mode detected by the SX diodes and an m >1 / n=1 mode detected by the
Mirnov probes. It is tempting to conclude from this observation that the m=1 mode is
particularly susceptible to mode coupling either by imposing its frequency onto a
mode with larger m as in the case of Fig. 12 or by being dominated by a developing
m=2 perturbation as in the case of Fig. 13. On the other hand, the occurrence of
satellites to the m=1 mode contradicts to the widely accepted model of the m=1
internal kink according to which the perturbation is restricted to the interior of the g=1
surface at least in the cylindrical approximation. If toroidal effects are included,

however, an m=2 component extending over the minor cross section is found [18].

As far as the interpretation of experimental data is concerned, we would like to point
out that mode coupling is hard to detect if the modes manifest themselves in Bﬁ
signals only. As a simple example, a cluster of coupled modes with the mode numbers

m -1, mand m + 1 and the amplitudes y/2, 1 and y/2, respectively, is identical with a
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mode having the mode number m and an amplitude varying like 1 + y cos 98 [11]. Thus,

mode coupling might occur much more frequently than the first glance indicates.

Summarizing the outcomings of this section we arrive at the conclusion that the field
perturbation B propagates with the velocity predicted by theory and given by eq. (6)
according to which v* is a nearly toroidal motion. The dominant component of this
vector parallel to B , however, does not contribute to the measured value of 513. Hence

the signal frequency can be obtained by taking into account only the rather small

component ¥, normal to B.

In giving this statement, we have disregarded the so-called mode locking which is due
to the interaction between the moving mode structure and the image currents induced
by it in the conductive wall. This effect becomes important if wt approaches unity

where o is the angular frequency of the mode and t the skin time of the vessel. The

investigations on this topic performed in ASDEX are reported in another paper [19].

Here, only cases with wt >> 1 are discussed.

lling of Ph nd Ampli n mparison with Experimen

In Section 2, it was shown that eq. (2) provides a good description of the phase
behaviour, if allowance is made for determination of A from the experimental data
rather than from Merezhkin’s formula, eq. (3). Furthermore, it was shown that the
amplitude can be well fitted by a + b cosd + ¢ singd. Obviously, such fit can be

replaced by a fit in 9* which then leads to

Bs = (a0 + acCcos ¥ + assin® ) cos(md + 8) (14)

where the term assim‘}. allows for the observed up - down asymmetry of the

amplitudes. Eq. (14) corresponds to the Fourier expansion

i +1 N .
Bo= D, @ms COS(M+i)® + bmyi sin(m+i)d (15)
i=-1

which means that the sidebands m-1 and m+1 are sufficient for a satisfactory fit.

Nevertheless, eq (14) can be considered as describing a single mode with the
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poloidal mode number m if we define such mode by having m maxima, m minima and
2m zeros. This is obviously fulfilled if the amplitude function has no zero, i.e. if /ac/</ao/
and /ag/</ao/. We ask now: Can a mode structure of this type be created by a
perturbation current flowing on just one rational magnetic surface? In what follows we
shall try to answer this question by comparing the experimental results to a model

developed by Fussmann, Green and Zehrfeld [3] which deals with just this situation.

Prior to carrying out this comparison, we have to comment on the rather unexpected
up-down asymmetry of the amplitudes: Regardless on the particular mode type, there
is a clear up-down asymmetry, which was already seen from Figs. 4, 5 and 6. In some
cases both on the outer and on the inner side of the torus, By tends to increase with 0.
More frequently, |'l§,3| is larger at the upper than at the lower half of the torus. Such
asymmetries are observed in well-positioned double-null configurations. As far as
divertor action is concerned, a vertical displacement of + 2cm is sufficient to provide a
transition to effectively single-null operation which means that the double-null
separatrix is split up such that only one of the divertor chambers is loaded by the
particles and the heat leaving the main plasma. The up-down asymmetry of the mode

amplitudes, however, is only marginally modified by the vertical position of the plasma.

The model of Fussmann, Green and Zehrfeld is also based on Shafranov’s
approximation but is going into more detail. The tokamak equilibrium is described by

analytic functions for pressure and current, namely

p=po(1 ;—22) (16)
|(r)=|p[1 -(1 fz- ”] (17)

where r is the minor radius of an inner magnetic surface, a that of the plasma column,

o the total toroidal current and po the pressure at the magnetic axis. For integer values
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of u and v, analytic solutions of the Grad-Shafranov equétion are obtained. It is
supposed now that on a rational magnetic surface g=m (n=1 assumed) a perturbation
surface current is flowing parallel to the magnetic field lines giving rise to a magnetic
field perturbation B. The superposition of B and the equilibrium field leads to the

creation of magnetic islands at that and at the neighbouring rational surfaces

characterized by m-1 and m+1.

On the basis of this model, B outside the plasma is calculated. An example is shown in
Fig. 15, namely a polar diagram of By for the case Bp=1.5,m = 4. ltis clearly seen that
the poloidal wavelength decreases appreciably from the outer to the inner side. So
does the amplitude but not monotonically: the upper and lower maxima exceed that in
the midplane at the outer side. Apparently we cannot compare this particular feature
with the experiment since this is just the region where no Mirnov probes are located. In
our calculation, the major radius of the plasma is assumed to be R, = 168 cm; the
centre of the circle defined by the Mirnov probe sets is also 168 cm apart from the
torus axis. Obviously, the precise value of R, enters into the amplitudes and

marginally also into the phases of the field pertubation.

We first compare the behaviour of the phase with that predicted by egs. (2) and (3). For
this purpose, we refer to a situation analogous to Eﬁ o< Sin (MY), i.e. Eﬂ. () = 0. With

incrasing 9, the next zeros are found at 8¢ (outside) and ¥j (inside). We define now

Ao and Aj by
m (ﬂo - Ao SIN 130) =T,

m(n+6i-7qsinﬂi)=1c.

These two values and the average of them can be compared with Ay according to eq.

(3). The result of such a comparison is listed in Table 1.
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Ires 1_‘. Ao + Ai
B m a 2 Ao Ai 2 Am
3 3 0.94 0.72 0.45 0.79 0.62 0.72
4 4 0.97 0.82 0.43 1.03 0.73 0.77
5 5 0.99 0.90 0.41 1.20 0.80 0.80

Table 1: Phase asymmetry parameters for Bp = 1.5, v = 2. rpeg is the minor radius of

the resonant surface, a that of the plasma column. The meaning of the other quantities

is explained in the text.

For the sake of simplicity, the current distribution parameter u was chosen such that
the perturbation current is flowing near the plasma boundary, which, assuming a
central q value of 0.85, is achieved by choosing p = m. Accordingly, the Merezhkin
parameter Ay given by eq. (3) is calculated from the values of Bpandlj/2atr=a.ltis
seen from this table that Ay and A; differ appreciably from each other while (Ag + ;) / 2
comes close to Ap. From the data of Table 1, one gets the impression that eq. (2),
assuming a constant A (not varying with ¥) might be a rather unsatisfactory
approximation. What such variation of A really means, however, is demonstrated by
Fig. 16. In this figure, 1"3'13 calculated from the model for the case m =3, p=3, B = 1.51s
plotted. This curve is compared to that obtained from a calculation of B according to
egs. (2) and (3) where A = 0.62 (cf. Tab. 1) and where the amplitude is chosen
arbitrarily. It is seen from this figure that the assumption of a A value not varying with 9
does not lead to appreciable phase errors as compared to those arising from

experimental ones. Hence, eqgs. (2) and (3) are justified by the model calculation.

Obviously, the model provides amplitudes symmetric to the midplane. Furthermore,
the above mentioned non-monotonic behaviour of the calculated amplitudes cannot
" be compared with that of the measured ones. Thus, we have to restrict the comparison
to the out-in-contrast of the mode amplitudes. The most simple measure of it is the

ratio pm of the probes located in the midplane at the low-field and the high-field side of
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the torus, respectively. py, > 1 means that the amplitude is larger at the outer side. In
lieu of this quantity the out-in ratio p, of the averaged signals from both parts of the
probe sets can be considered. In general, both quantities do not deviate appreciably
from each other; hence, in the following we sometimes refer to p without specifying
what particular quantity is meant. It should be mentioned that, obviously, there is some
influence of the particular horizontal position of the plasma column onto the out-in ratio
of the mode amplitudes. Due to the divertor configuration and the dimensions of the
discharge chamber, divertor operation is possible at major radii between 164 and 170
cm, (168 cm being the major radius of the Mirnov probe circles) while the minor
horizontal diameter 2a does not depend on R but slightly on Bp + /2. For OH plasmas,
this value is typically 1 which leads to 2a = 80 cm. With increasing Bp, 2a may amount

up to 85 cm. The observed variety of contrast ratios, however, is far from being

attributable to the variation of R or a.

In Table 2, some representative values of p.,, the out-in amplitude ratio in the
midplane, are listed. It is clearly seen that p, increases with both the poloidal  and
the poloidal mode number m. It should be noted that B, = 2 is approximately the
maximum value achievable at approaching the Troyon beta limit. On the other hand,
Bp = 0.1 is unrealistically small; it has been taken into this table, however, in order to

demonstrate the influence of the poloidal beta onto the amplitude ratio.

Bp m (2  m CENE) Pm (4)
0.1 2 1.5 3 1.6 4 1.9
0.5 2 1.8 3 1.8 4 2.7
1.0 2 2.2 3 2.5 4 4.3
1.5 2 2.7 3 85 4 7.6
2.0 2 3.3 3 5.6 4 17.2

Table 2: pr,, the out-in amplitude ratio of By as a function of m and Bp- u=23inthe

casesm=2and m=3, u=4form=4.v =2 for all profiles.
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Out of all Mirnov oscillations, the m=2 / n=1 mode observed at quite different scenarios
[8] comes closest to the theoretical expectations, i.e. the measured values of p agree
frequently with the predicted ones. There are, however, cases where p is slightly
smaller than 1 which, according to the model, should never occur. This trend is
reinforced for the m>3 / n=1 mode propagating in the electron diamagnetic drift
direction in beam-heated plasmas [7]. For this mode the cases with p ~ 1 prevail. In
contrast, for the satellite of the m = 1 mode (see refs. [4, 8, 10]), p ~ 1 is found only in
very rare cases. Usually p is not only larger than unity; moreover, it frequently exceeds
by far the conceivable values according to our model. Contrast ratios as large as 25
have been found even at moderate values of Bp; this figure, however, is not an upper
limit since in many cases the signals from the inner part of the probe set are
undetectably small. In general, for all mode types the behaviour of p is very erratic; in

particular it is not correlated to quantities as e.g. mode number or poloidal beta.

Thus we are confronted with the fact that , while predicting the behaviour of the phases
satisfactorily well, our model is not able to describe even roughly that of the
amplitudes. Of course, we have to require that both the phase and the amplitude are
modelled, which follows from a very simple consideration: Let jt be the perturbation

current and B the unperturbed magnetic field. Our model claims
ji=0B (18)
where a is a scalar function. We have to postulate div jy = 0, i.e.
oadivB+Bgrada=0 19
+Bgr (19)
=0

which is only fulfilled if & does not vary along a field line of the unperturbed magnetic

field. Hence, the out-in-contrast of the amplitude §ﬂ(°’ cannot deviate drastically from
that of B.

On looking out for a modification of our interpretation scheme which saves the basic
idea but conforms to the experimental findings, our attention is drawn to the empirical

fact of mode coupling. Two examples were already discussed in Section 3 and it was
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mentioned there that mode coupling is a quite common feature of tokamak plasmas.
This holds not only for the coupling between the modes m = 1 and m = 2 but also for
the "satellites" of the m = 1 with large m number as e.g. 5. As stated in ref. [8], m = 1
modes in beam-heated ASDEX plasmas are always observed to be accompanied by

such satellites regardless on the waveform, i.e. sawtooth precursor, continuous mode
or fishbone-like burst.

On the basis of these observations, we feel justified to propose mode coupling as the
most conceivable explanation for the observed variety of out-in amplitude ratios. Since
the measured amplitudes can be well fitted by three modes with constant amplitudes
(cf. eq. (15)) the superposition of the fields of three neighbouring modes according to
the model is expected to be sufficient, too. Obviously, the proposed interpretation
scheme allows also for up-down asymmetries of the amplitudes which can be

obtained from phase differences between the three substituents.

As a first example, we present the simulation of the m = 6 mode already shown in Fig.
6. For the sake of better comparison, Figs. 17b and 17e are a repetition of the two time
slices of Fig. 6. The dominant component m = 6 is plotted in Figs. 17a and 17d. The
out-in ratio of its amplitude is smaller than the measured one; hence in the simulation
the maxima coincide (apart from the phase shift) at the low-field side of the torus. Figs.
17¢ and 17f are obtained by superimposing the modes m = 5 and m = 7 with the
relative amplitude 0.20 for the perturbation currents of both sidebands. The up-down
asymmetry is due to a phase shift of +239° relative to the leading mode. It is seen from
this figure that sidebands with moderate amplitudes and phase shifts are sufficient to
account for the out-in and the up-down asymmetries. Another simulation is shown in
Fig. 18. In this case the out-in ratio of the leading mode is larger than the measured
one so that the maxima have to couple at the inner side. The relative amplitude of the
sidebands is 0.22 while the phase shift is +8°. Note that in both cases the fairly good
- agreement was achieved without fully utilizing the number of free parameters: The

amplitudes of the sideband currents might differ and there is no need to assume that
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the phase shifts are opposite in sign but equal in absolute value. These restrictions

were introduced by the authors just for reducing complexity.

Thus we have found that the concept of perturbation currents flowing on rational
magnetic surfaces leads to satisfactory agreement with the experimental observations
obtained from ASDEX - and presumably from other devices, too - if allowance is made
for the coupling of at least three modes with the mode numbers m-1, m and m+1,

respectively, produced by currents flowing on the according rational magnetic
surfaces.

5. Probl | indications 1 N : i

So far, mode coupling was defined as the interaction of at least two perturbation
currents flowing on different rational surfaces. This type of mode coupling is a
resonant one since the perturbation field of a single current distribution with the mode
number m contains also components with all other mode numbers, in particular m-1
and m+1. On the other hand, as already stated before, a field perturbation B induces
currents in all surrounding conductors if there is a relative motion between them. (The
most prominent example is the so-called mode locking i.e. the interaction of a moving
mode with the currents induced by it in the vessel wall). Hence, there might also be

some interaction between the plasma inside the separatrix and the scrape-off layer.

We follow this idea because we are obliged to explain a rather puzzling observation.
In Section 3 and ref. [8], the satellite to the m = 1 mode was discussed. It was found

that its poloidal mode number mg is always exceeding the boundary q value

. 2ma?B,
HoRolp

q [1 + €2

]
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which takes into account the toroidal curvature but disregards the contribution of the
multipole coils. As a rule mg is the smallest integer number which exceeds q".
Obviously, q is singular at the separatrix and hence rational surfaces with arbitrarily
large m/n ratio can be found within it. In the ASDEX device, the divertor coil triplets are
designed such that the field produced by them has a very short range. This is seen
from Fig. 1 which shows that the deviation of a near-circular boundary is restricted to
the immediate environment of the stagnation point. This means that the q values of
magnetic surfaces located a few cms inside the separatrix are practically equal to
those of a limiter tokamak. This is demonstrated quantitatively by Fig. 19 which is a
plot of g versus the minor radius r (more precisely: r = R-Ro), for both a divertor and a
limiter configuration. It is seen from this figure that inside the separatrix the q values do
not begin to differ from each other except at the last two centimeters. Outside the
separatrix, however, the q values of both configurations differ appreciably due to the

enhanced poloidal way of the field lines in the divertor case.

In this calculation, an ideal separatrix was assumed. The real magnetic configuration,
however, will be disturbed by the unavoidable imperfections of the divertor coils: They
might be somewhat elliptical, their centres need not be located precisely on the same
vertical axis and they may be slightly tilted. Model calculations performed by
Neuhauser [20] have shown that deviations of a few mm lead to appreciable
ergodization of the near-separatrix region. As a consequence, closed magnetic
surfaces with arbitrary large q values are not realized. For this reason it is

questionable whether or not the satellite current is flowing inside the separatrix.

In previous papers [7, 9 ] it was reported that in L-type beam-heated ASDEX plasmas
and in the L phase preceding L-H transitions an m 2 3/ n = 1 mode is frequently found
which propagates in the direction of the electron diamagnetic drift (i.e. opposite to the
satellite mode). Usually, this mode occurs simultaneously with the satellite oscillation.
~ Thus both modes have to be separated by Fourier decomposition. The number m* of
the localized mode is always smaller than the q’value according to eq. (20) which

means that the perturbation current of this mode is clearly flowing inside the
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separatrix. As a rule, m* is the largest integer number being smaller than q’; hence,

this mode is located close to the separatrix. Combining this statement with that given

on the mode number mg of the satellite, we arrive at the relation
ms = !Tl* + 1 (21)

which holds for all cases analyzed so far. This statement has to be qualified: In
ASDEX, beam-heated discharges with q” > 5 were but occasionally produced and not
investigated in detail. Hence, mg ranges between 3 and 5 only, where mg = 3 is
observed at q’< 3. In such discharges an m = 2 mode is observed, which propagates
in the direction of the diamagnetic electron drift; an example was shown in Fig. 10.
Including such modes, m’ ranges between 2 and 4 according to eq. (21). There is,
however, a significant difference between m" = 2 on the one and m" = 3 or 4 on the
other hand. While modes with m" = 3 or 4 occur only in the L-regime and during ELMs
a quasi-stationary m = 2 mode propagating in the direction of the diamagnetic electron
drift is observed regardless on the particular heating scheme provided that q" is

sufficiently close to 2 which in practice means q'< 2.5. For this reason, the underlying

physics are likely to be different in the case m" = 2.

Considering the interpretation scheme being established in the preceding section, we
are confronted to the following problems: So far, it was tacitly assumed that the
sideband modes m - 1 and m + 1 are always "available” which means that the
according resonant surfaces are located inside the separatrix. As far as the m" mode is
concerned, it is questionable whether or not the sideband m” + 1 can be realized by a
current flowing at a closed resonant surface inside the separatrix. In the case of the

satellite mode, this is even not clear with respect to the main component.

There are some experimental indications for the possibility of Mirnov oscillations
caused by currents flowing outside the separatrix. The most impressive one is

obtained by a moveable Mirnov probe which was introduced into the upper divertor as
| shown in Fig. 2. The By signals of this probe exhibit always the frequency of the
satellite oscillation while that of the m" mode - if detectable at all - is very weak.

Furthermore, the frequency of the satellite shows up in the signals of Langmuir probes
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which are positioned in the scrape-off layer while that of the m” mode is never seen.

This holds also for the signals of other diagnostics, e.qg. for reflectometry probing the

scrape-off layer.

Thus we have to cope with the eventual occurrence of perturbation currents flowing
outside the separatrix. The patterns of such currents may close in the same way as
image currents do at the gaps of a conducting vessel, namely by connecting a region
of positive current with the neighbouring region of negative current. Apparently, this
scheme works well if these currents are still flowing on rational magnetic surfaces,
except for the "connecting" region. For this reason, we consider this kind of mode
coupling as a quasi-resonant one. The perturbation currents in the scrape-off layer
may be shorted by the divertor plates which would explain the large amplitudes

recorded by the Mirnov probe positioned in one of them.

Obviously, we are not able to determine the true mode number of a mode caused by
currents in the scrape-off layer since the spatial structure of the B signals reflects only
that of the equilibrium configuration in the main chamber which - as stated above -

deviates from circular magnetic surfaces only near the stagnation points.

Finally, another puzzling feature of the satellite mode should be mentioned: In some
cases, all signals from the probes positioned at the high-field side are practically in
phase while those from the low-field side exhibit the usual pattern of a travelling wave.
An example is shown in Fig. 20. Apparently, such behaviour can be ascribed to the
superposition of an m = 0 / n = 1 mode. Indeed, by subtracting the average of all
signals amplitudes from each individual signal, a travelling mode is reconstructed for
the inner section, too. It is difficult to comment on this observation since the occurrence
of the m = 0 component cannot be attributed to quantities like q, Pp or others which

might be thought to be relevant for this phenomenon.
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6. Summary

The basic concept of helical perturbation currents flowing on rational magnetic
surfaces as the source of Mirnov oscillations is examined by comparing a quantitative
model based on Shafranov’s approximation with the experimental data obtained on
ASDEX in order to describe quantitatively the measured poloidal asymmetries of
phase and amp_litude. As far as the phase is concerned, satisfactory agreement was
found. The observed behaviour of the amplitudes can be reconciled with this concept,
too, if mode coupling is invoked. The assumption of two sidebands is sufficient to
simulate the experimental findings. The discussion of two particular modes leads to
the consideration of perturbation currents eventually flowing in the scrape-off layer.

Experimental evidence for such currents is given.

Apart from the poloidal structure of the mode, its propagation, say the frequency of the
B signal, calls for explanation. This is based on the concept of frozen magnetic fields.
In the past, there was some discussion whether particular modes propagate in toroidal
or in poloidal direction. This question cannot be decided from experimental data since
only the component normal to B enters into the signal frequency. At the first glance, the
existence of coupled modes arising from different magnetic surfaces and expected to
have different frequencies appear to enhance the confusion. In contrast, as is shown
in this paper, this phenomenon clarifies the situation: MHD modes in Tokamaks

propagate in nearly toroidal direction.
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Fig. 1

IPP3 KLB 401-89

Mirnov probe array, original version. Usually, the signals from the probes
marked by crosses were recorded. The signal names A 1 WNW to A 15
WNW (outer section) and I2WNW to IBWNW (inner section) quoted in some
of the following figures refer to such an array. For the sake of comparison,

the separatrix (dashed line) is shown, too.




Fig. 2:

IPP3 KLB 400-89

Mirnov probe array, recent version. Usually, the signals from the probes
marked by crosses were recorded. The signal names A1SST to A11SST
(outer section) and I11SST to I7SST (inner section) quoted in some of the
following figures refer to this array. In some cases, a moveable magnetic
probe was introduced into the upper divertor chamber. The dashed lines
indicate the field of vision of the SX diode cameras (located in a different

poloidal plane).
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IPP3 KLB 395-89

Plot of sin [3 (ﬂ- 0.4 sin ﬁ]+mt] as a function of t at various poloidal
positions. ® = 0° is in the midplane, low-field side, © = 90° is at the top etc.
Fig 3 represents the case of equally spaced Mirnov probes; the phase can
be followed easily. The case of a double-null divertor tokamak is
represented by leaving out the hatched sections; the knowledge of the
variation of the phase velocity is then needed for the extrapolation across

the region of lacking information.
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Fig. 4:

IPP3 KLB 398-89

Determination of the poloidal mode number m=4 from a raw data plot of By
according to Fig. 3. The location of the Mirnov probes can be taken from
Fig. 2. The mode propagates in positive 9 direction, i.e. from bottom to top of

the plot. The figures in the column "Masstab" indicate the amplitude.
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Fig. 5: Determination of the poloidal mode number m=6 from a plot of the dominant

Fourier component of By according to Fig. 3 and a least-square fit which

leads to %2 = 0.04 while the attempt to obtain m=4 results in %2 = 0.6.
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Fig. 7: Map of the locations of the Mirnov probes in the 1‘}* - ¢ - plane. Overlaid is the

projection of the field lines in the q =3 surface.
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Fig. 8a: Phase tracing for an m=3 / n=1 mode. The location of the probes can be

taken from fig. 7.
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Fig. 8b: Phase tracing for an m=3/ n=1 mode; same shot and same time window as

in Fig. 8a. The location of the probes can be taken from Fig. 7.




Fig. 9:

0 T 2T

Contributions of the toroidal rotation velocity v and the electron drift velocity
-j / eng to the resulting k vector of the mode propagation. The three

directions of j represent the cases Bp<1, Bp=1 and Pp>1.
Top: Counter-injection.

Bottom: Co-injection. (For technical reasons, the toroidal field is reversed,

too).
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Fig. 10:
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Profiles of g === f(P-fd (----)andfy-2fg (-----).The profile of the

toroidal rotation frequency fe ( 0 - measured points) was obtained by CX
spectroscopy, that of fy from measured T; and ng profiles. The frequency f =
7.4 kHz ( A) is that of the m=1/ n=1 oscillation; f = 3.3 kHz ([ ) is that of an
m=2 / n=1 oscillation which occurs simultaneously. The location of the g=1
surface is obtained from SX measurements, that of the q=2 surface is

estimated.
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MHD activity of a H-type plasma approaching the Troyon beta limit.
Trace a: Hy,/ D, emission from a divertor chamber indicating the
occurrence of ELMs. Trace b: By signal from a Mirnov probe located in the
midplane at the low-field side. Data acquisition starts att = 1.25 s. Trace c:
Same from the high-field side. Overlaid is the temporal evolution of the

poloidal beta.
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Fig. 12: Expansion of Fig. 11. Trace a: Hy / Dy emisssion. (The signal of the
photodiode saturates.) Trace b: By, midplane outside. Trace c: By, midplane

inside. Trace d: SX diode signal from a near-centre chord.
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Fig. 13:  Expansion of Fig. 11. Same traces as in Fig. 12, 5 ms later. Note that the

mode frequency is transiently seen in the H,, / D, signal, too.
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Fig. 14: Profiles of f(p (—), f(p-fd (----)and f(p-2fd [=:=¢= ). The frequency f,, of the

toroidal rotation is calculated assuming a half-circular profile and matching
the measured value at r=30 cm ( o ). The frequency fgq due to the
diamagnetic drift was obtained from measured T; and ng profiles. f = 28 kHz
(A)is the frequency of the m=1/ n=1 oscillation (cf. Fig. 12). f = 8.5 kHz and
f=12.6 kHz ([J) are the frequencies of the m=2 / n=1 oscillation (cf. Figs. 12
and 13). The location of the rational surfaces g=1 and gq=2 were obtained

from a code simulation.
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Fig. 15:  Polar diagram of the field perturbation B, calculated according to the model

of Fussmann, Green and Zehrfeld for Bp=1.5.
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IPP3 KLB 280-89

Fig. 16: Poloidal variation of wavelength and amplitude for m=3. Solid line:
Calculation according to the model of Fussmann, Green and Zehrfeld.

Dashed line: By = const. sin [ 3 (¥ - 0.62 sin 9) ], according to Merezhkin’s

transformation.



Fig. 17:

IPP3 KLB 392-89

Simulation of a measured m = 6 structure by the model of Fussmann, Green
and Zehrfeld. Figs. 17b and 17e are identical with the polar plots of Fig. 6.
The leading m = 6 component of the simulation is shown in Figs. 17a and
17d. The polar plots of Figs. 17c and 17f are obtained by adding the m =5
and m = 7 sidebands with a relative amplitude of 0.2 and a phase shift of +

230,
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Fig. 18: Polar diagrams of the field perturbation 513 according to measured data (Fig.

18b) and simulations. Fig. 18a shows the leading component, Fig. 18¢c a

simulation with sideband amplitudes of - 0.22 and a phase shift of + 89.
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Fig. 19: q profile in the midplane of a divertor (solid line) and of a limiter tokamak.
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